Encoding Points on Hyperelliptic Curves over Finite Fields in Deterministic Polynomial Time
نویسندگان
چکیده
We provide new hash functions into (hyper)elliptic curves over finite fields. These functions aims at instantiating in a secure manner cryptographic protocols where we need to map strings into points on algebraic curves, typically user identities into public keys in pairingbased IBE schemes. Contrasting with recent Icart’s encoding, we start from “easy to solve by radicals” polynomials in order to obtain models of curves which in turn can be deterministically “algebraically parameterized”. As a result, we obtain a low degree encoding map for Hessian elliptic curves, and for the first time, hashing functions for genus 2 curves. More generally we present for any genus (more narrowed) families of hyperelliptic curves with this property. The image of these encodings is large enough to be “weak” encodings in the sense of Brier et al., and so they can be easily turned into admissible cryptographic encodings. deterministic encoding, elliptic curves, Galois theory, hyperelliptic curves
منابع مشابه
Deterministic Encoding and Hashing to Odd Hyperelliptic Curves
In this paper we propose a very simple and efficient encoding function from Fq to points of a hyperelliptic curve over Fq of the form H : y = f(x) where f is an odd polynomial. Hyperelliptic curves of this type have been frequently considered in the literature to obtain Jacobians of good order and pairing-friendly curves. Our new encoding is nearly a bijection to the set of Fq-rational points o...
متن کاملCounting points on Cab curves using Monsky-Washnitzer cohomology
We describe an algorithm to compute the zeta function of any Cab curve over any finite field Fpn . The algorithm computes a p-adic approximation of the characteristic polynomial of Frobenius by computing in the Monsky-Washnitzer cohomology of the curve and thus generalizes Kedlaya’s algorithm for hyperelliptic curves. For fixed p the asymptotic running time for a Cab curve of genus g over Fpn i...
متن کامل0 The Number of Rational Points On Genus 4 Hyperelliptic Supersingular Curves
One of the big questions in the area of curves over finite fields concerns the distribution of the numbers of points: Which numbers occur as the number of points on a curve of genus g? The same question can be asked of various subclasses of curves. In this article we classify the possibilities for the number of points on genus 4 hyperelliptic supersingular curves over finite fields of order 2, ...
متن کاملFields of definition of torsion points on the Jacobians of genus 2 hyperelliptic curves over finite fields
This paper deals with fields of definition of the l-torsion points on the Jacobians of genus 2 hyperelliptic curves over finite fields in order to speed Gaudry and Schost’s point counting algorithm for genus 2 hyperelliptic curves up. A result in this paper shows that the extension degrees of the fields of difinition of the l-torsion points can be in O(l) instead of O(l). The effects of the res...
متن کاملUsing zeta functions to factor polynomials over finite fields
In 2005, Kayal suggested that Schoof’s algorithm for counting points on elliptic curves over finite fields might yield an approach to factor polynomials over finite fields in deterministic polynomial time. We present an exposition of his idea and then explain details of a generalization involving Pila’s algorithm for abelian varieties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010